Педагогика » Методика реализации межпредметных и внутрипредметных связей при обучении математике » Методика реализации внутри- и межпонятийных связей

Методика реализации внутри- и межпонятийных связей

Страница 8

Покажем, каким образом геометрическое истолкование понятия производной может способствовать правильному построению графиков функции с помощью дифференциального исчисления. (Мы проиллюстрируем тем самым реализацию внутрипредметных связей на уровне умений и навыков.)

1. График функции f (х) = х3 -2х2 + х должен быть таким, каким он изображен на рисунке 17. Учащиеся же представляют его в виде, изображенном на рисунке 18.

2. Функция f(х)=х2—х4 должна иметь график, изображенный на рисунке 23, а школьники строят ошибочно другие эскизы графика (рис. 19,20)

Эти ошибки происходят из-за того, что школьники при построении графика функции берут во внимание лишь характер монотонности функции и то, какой экстремум имеет функция в той или иной экстремальной точке, забывая при этом учесть, существует ли производная функции в этих точках, и если да, то каково ее значение.

Действительно, график функции f(x)=x2—x4 (см. рис. 20) построен так, что в точках с абсциссами х=— и х= к кривой нельзя провести касательных, в то время как производная функции в этих точках существует (она равна нулю), а значит, проведение касательных возможно.

Следовательно, при построении графика функции школьники должны уметь сопоставить ход кривой в окрестностях экстремальных точек с тем, возможно ли проведение касательных или нет, причем в случае равенства нулю производной функции в этих точках касательные должны быть параллельны оси х.

3. Пусть нужно построить график функции f(x)=x4 — 2х2 — 3. Учащиеся оформляют проведенное исследование функции в виде таблицы.

До построения графика функции полезно сначала на координатной плоскости отметить точки (—1; —4), (0; —3), (1; —4) (рис. 22)

Учитывая, что касательные к графику функции в этих экстремальных точках параллельны оси х (это следует из равенства нулю угловых коэффициентов, так как f' (—1) = f'(0) = f'(1) = 0), проведем в этих точках прямые, параллельные оси х (рис. 22). Затем следует, согласно таблице, наметить ход кривой в точках (рис.23). Построение самого же графика функции явится завершающим этапом (рис. 24).

Внутрипонятийные связи играют ведущую роль в образовании понятий а межпонятийные связи — в его формировании.

Формирование понятия более длительный процесс, чем его образование. Образование понятия связано с изучением овладения его содержанием, а формирование понятия характеризуется еще и овладением его объемом.

Содержательной стороной межпонятийных связей являются логические отношения, которые устанавливаются между понятиями. Остановимся на их характеристике. Дадим каждому из видов отношений соответствующее определение.

К основным отношениям между понятиями следует отнести: отношение тождества, отношение несогласованности, отношение подчинения, отношение соподчинения, отношение частичного совпадения. Эти отношения определяют структуру понятийного аппарата курса математики.

Определение 1. Понятия А и В тождественны, если полностью совпадают их объемы (рис. 25)

Страницы: 3 4 5 6 7 8 9 10 11

Похожие публикации:

Специфика творческой деятельности
Творческой деятельностью мы называем такую деятельность человека, которая создает нечто новое, все равно будет ли это созданное творческой деятельностью какой-нибудь вещью внешнего мира или известным построением ума или чувства, живущим и обнаруживающимся только в самом человеке. Если мы взглянем н ...

Нормы развития речи ребёнка
Иногда совершенно нормальные дети поздно начинают говорить. Это всегда вызывало тревогу у родителей, хотя на самом деле здесь нет никаких оснований для беспокойства. Дело в том, что развитие речевых способностей ребенка зависит от многих обстоятельств. Например, не последнюю роль в том, что для сво ...

Программа развития понимания активной роли человека в обществе у младших школьников
Младший школьный возраст - большой период жизни ребенка. Условия расширяются: рамки семьи раздвигаются до приделов улицы, города, страны. Ребенок открыт для отношений, разных видов деятельности и общественных функций людей. Проблема данной темы актуальна еще тем, что именно в этот период происходит ...

Факторы адаптации детей в школе

Современное общество заинтересовано сохранить и улучшить здоровье человека. Эта проблема является одной из главных.

Категории

Copyright © 2019 - All Rights Reserved - www.pedagogyflow.ru