При такой работе закрепляются знания о параметрах квадратного уравнения, идет активное усвоение общей формулы корней и теоремы Виета.
Учителю при работе над внутрипонятийными связями следует иметь в виду, что не всегда структура текста учебника математики соответствует оптимальной последовательности этапов формирования понятий, которая может быть такой:
1. Рассмотрение примеров объектов, входящих в объем понятия.
2. Введение термина, обозначающего понятие.
3. Рассмотрение примеров объектов, не входящих в объем понятия.
4. Формулирование определения понятия.
5. Сообщение дополнительных сведений, в частности указание несущественных признаков понятия.
6. Систематизация знаний.
Большую роль в работе с внутрипонятийными связями играют упражнения по практическому применению понятий и теорем. На уроках мы часто сталкиваемся с ситуацией, когда учащиеся верно формулируют определение понятия, теорему, но оказываются бессильными в случае решения конкретной задачи. Например:
|
а) хватит ли 20 см проволоки, чтобы согнуть из нее треугольник, одна сторона которого была бы равна: 12 см; 8 см; 10 см;
б) почему углы при основании равнобедренного треугольника всегда острые;
в) почему каждый острый угол прямоугольного равнобедренного треугольника равен 45°?
Проверить, сознательно ли школьники усвоили внутрипонятийные связи, поможет педагогически целесообразная постановка вопросов. Вопрос считается педагогически целесообразным, если ответ на него не копирует учебник, а будит активную, сознательную мысль ученика; такой вопрос должен выявлять степень понимания, а не степень запоминания материала. Пример.
В 5 классе при изучении натурального ряда чисел учащимся сообщают его свойства: натуральный ряд чисел начинается с 1; каждое следующее натуральное число на единицу больше предыдущего; натуральный ряд чисел неограничен (не имеет конца).
Вопросы: «С какого числа начинается натуральный ряд чисел?», «На сколько следующее натуральное число больше предыдущего?», «Конечен ли натуральный ряд чисел?» — педагогически нецелесообразны.
Выявить сознательное усвоение школьниками свойств натурального ряда чисел помогут такие вопросы: «Каково наименьшее натуральное число?», «Какое натуральное число предшествует 1?», «Назовите наибольшее натуральное число», «Почему а+1 обозначает следующее за натуральным числом а число?»
Для успешной реализации внутрипонятийных связей необходимо у школьников формировать логические приемы мышления, такие, как подведение под понятие, сравнение, выведение следствий, построение объектов по определению понятия.
К сожалению, значительная часть учащихся не владеет этими приемами. Так, при подведении объекта под понятие они опираются не на систему признаков, указанную в определении, а на отдельные признаки. Например, школьники ошибочно дают утвердительные ответы на вопросы: «Будут ли углы смежными, если они имеют общую вершину и в сумме составляют 180°?», «Будут ли углы вертикальными, если они равны и имеют общую вершину?»
Роль сказки в воспитании детей
Многолетняя привычка к логическому мышлению уводит взрослого из мира символов. Это - главная причина в различии восприятия народных сказок взрослым и ребенком. Кроме того, взрослый за свою жизнь создал много своих индивидуальных символов, и они чаще встречаются в его бессознательном языке, чем симв ...
ЕГЭ по истории России
При подготовке к единому экзамену по истории от выпускника требуется привести исторические факты, термины, даты в систему. То есть выпускнику необходимы умения и навыки по работе с исторической информацией. Тестовые задания ЕГЭ проверяют именно сформированность умений и навыков, а не просто знание ...
Методы стимулирования
Стимулировать — значит побуждать, давать импульс, толчок мысли, чувству и действию. Определенное стимулирующее действие уже заложено внутри каждого метода. Но есть методы, главное назначение которых — оказывать дополнительное стимулирующее влияние и как бы усиливать действие других методов, которые ...
Современное общество заинтересовано сохранить и улучшить здоровье человека. Эта проблема является одной из главных.