Педагогика » Методика изучения комплексных чисел в общеобразовательной школе » Методическое обеспечение изучения комплексных чисел в 10 классе общеобразовательной школы

Методическое обеспечение изучения комплексных чисел в 10 классе общеобразовательной школы

Страница 1

«Комплексные числа» по учебнику А.Г. Мордковича, П. В. Семенова

«Алгебра и начала анализа, профильный уровень», 10 класс

Таблица 4

Комплексные числа

10

Комплексные числа и арифметические операции над ними

2

Комплексные числа и координатная плоскость

1

Тригонометрическая форма записи комплексного числа

2

Комплексные числа и квадратные уравнения

1

Возведение комплексного числа в степень. Извлечение кубического корня из комплексного числа

2

Зачет по теме «Комплексные числа»

1

Контрольная работа по теме «Комплексные числа»

1

Тематическое планирование по теме «Комплексные числа»

Цели:

формирование представления о комплексных числах и операциях над ними;

формирование умения использования двух форм записи комплексного числа при решении задач;

овладение умением решения квадратных уравнений с отрицательным дискриминантом, возведение комплексного числа в степень, извлечения кубического корня из комплексного числа.

Тема урока: Комплексные числа и арифметические операции над ними

Количество уроков: 2.

Типы уроков: проблемный, комбинированный.

Элементы содержания (дидактические единицы на основе общеобразовательного стандарта): комплексные числа, мнимая единица, действительная и мнимая часть комплексного числа, сумма, разность, произведение и частное комплексных чисел, сопряженное комплексное число, свойства сопряжения.

Работа с опорными конспектами работа, с раздаточными материалами

Имеют представление, что такое комплексные числа; могут определить действительную и мнимую часть, модуль и аргумент комплексного числа. Могут выполнять арифметические действия над комплексными числами в разных формах записи. Умеют определять понятия, приводить доказательства.

Могут определить действительную и мнимую часть, модуль и аргумент комплексного числа. Могут выполнять арифметические действия над комплексными числами в разных формах записи. Умеют работать с учебником, отбирать и структурировать материал.

Практикум, фронтальный опрос, решение упражнений

Знают комплексные числа; могут определить действительную и мнимую часть, модуль и аргумент комплексного числа. Могут выполнять арифметические действия над комплексными числами в разных формах записи. Используют для решения познавательных задач справочную литературу.

Могут определить действительную и мнимую часть, модуль и аргумент комплексного числа. Могут выполнять арифметические действия над комплексными числами в разных формах записи.

Тема урока: Комплексные числа и координатная плоскость.

Количество часов: 1.

Тип урока: комбинированный

Элементы содержания: координатная плоскость, отождествление комплексного числа с точками координатной плоскости, вектор суммы, вектор разности, вектор произведения.

Фронтальный опрос. Решение упражнений, составление опорного конспекта

Знают геометрическую интерпретацию комплексных чисел, действительной и мнимой части комплексного числа; могут найти модуль и аргумент комплексного числа. Умеют определять понятия, приводить доказательства. Могут определять геометрическую интерпретацию комплексных чисел, действительной и мнимой части комплексного числа; могут найти модуль и аргумент комплексного числа.

Тема урока: Тригонометрическая форма записи комплексного числа

Количество часов: 2.

Типы уроков: проблемный, комбинированный

Элементы содержания: модуль комплексного числа, модуль произведения, свойства моделей комплексных чисел, неравенство треугольника, тригонометрическая форма записи комплексного числа, аргумент, равенство комплексных чисел.

Проблемные задачи, фронтальный опрос, упражнения

Имеют представление, как определить действительную и мнимую часть, модуль и аргумент комплексного числа; могут записывать комплексные числа в тригонометрической форме.

Могут определить действительную и мнимую часть, модуль и аргумент комплексного числа; могут записывать комплексные числа в тригонометрической форме.

Страницы: 1 2 3 4 5 6

Похожие публикации:

Выявление склонности к воровству у учащихся 4-х классов
Исследовательская работа, целью которой было выявление взаимоотношений в семьях учащихся 4-х классов, а также склонность этих учащихся к делинквентному поведению, проводилась на базе МОУ "Средняя общеобразовательная школа № 138" Октябрьского АО г. Омска. В исследовании приняли участие 4 п ...

Преимущества сказкотерапии в воспитании
В данном параграфе курсовой работы рассмотрен опыт педагогов по использованию сказкотерапии в воспитании детей дошкольного возраста в условиях ДОУ. Данный опыт был подобран нами из анализа статей в журналах по дошкольному воспитанию и образованию и анализа Интернет-сайтов, посвященных изучаемой тем ...

Диагностирование обучаемости
Диагностирование обученности неотделимо от диагностирования обучаемости, поскольку правильное представление о достигнутых результатах может быть получено только в связи с условиями их достижения. Обучаемость – это способность учащегося овладевать заданным содержанием обучения. Важнейшими компонента ...

Факторы адаптации детей в школе

Современное общество заинтересовано сохранить и улучшить здоровье человека. Эта проблема является одной из главных.

Категории

Copyright © 2019 - All Rights Reserved - www.pedagogyflow.ru