Педагогика » Методика изучения комплексных чисел в общеобразовательной школе » Обзор учебников по алгебре и началам математического анализа для 10-11 классов, содержащих тему «Комплексные числа»

Обзор учебников по алгебре и началам математического анализа для 10-11 классов, содержащих тему «Комплексные числа»

Страница 2

В данном учебнике каждый параграф темы «Комплексные числа» изложен кратко и содержит минимум информации по теме, также содержит несколько несложных примеров и небольшое количество упражнений. Некоторые сведения, которые другие авторы в своих учебниках вводят как обязательные, в данном учебнике находятся в параграфах, отмеченных звездочкой, например, формула Муавра, умножение и деление комплексных чисел, записанных в тригонометрической форме, а также основная теорема алгебры. Упражнений по теме «Комплексные числа» в учебнике мало и они, в основном, не сложные для выполнения, хотя присутствует несколько задач повышенной трудности.

В учебнике А.Г. Мордковича, П.В. Семенова «Алгебра и начала математического анализа», профильный уровень, 10 класс тема «Комплексные числа» вводится во втором полугодии 10 класса сразу после изучения тем «Действительные числа» и «Тригонометрия». Такое размещение не случайно: и числовая окружность, и формулы тригонометрии находят активное применение при изучении тригонометрической формы комплексного числа, формулы Муавра, при извлечении из комплексного числа квадратного и кубического корней. Тема «Комплексные числа» представлена в 6-ой главе и разбита на 5 параграфов: комплексные числа и арифметические операции над ними; комплексные числа и координатная плоскость; тригонометрическая форма записи комплексного числа; комплексные числа и квадратные уравнения; возведение комплексного числа в степень, извлечение кубического корня из комплексного числа.

Понятие комплексного числа вводится как расширение понятия о числе и невозможности выполнения некоторых действий в действительных числах. В учебнике представлена таблица с основными числовыми множествами и операциями, допустимыми в них. Перечисляются минимальные условия, которым должны удовлетворять комплексные числа, и затем вводится понятие мнимой единицы, определение комплексного числа, равенство комплексных чисел, их сумма, разность, произведение и частное.

От геометрической модели множества действительных чисел переходят к геометрической модели множества комплексных чисел. Рассмотрение темы «Тригонометрическая форма записи комплексного числа» начинается с определения и свойств модуля комплексного числа. Далее рассматривается тригонометрическая форма записи комплексного числа, определение аргумента комплексного числа и стандартная тригонометрическая форма комплексного числа.

Далее изучается извлечение квадратного корня из комплексного числа, решение квадратных уравнений. И в последнем параграфе вводится формула Муавра и выводится алгоритм извлечения кубического корня из комплексного числа.

Также в рассматриваемом учебнике в каждом параграфе параллельно с теоретической частью рассматривается несколько примеров, иллюстрирующих теорию и дающих более осмысленное восприятие темы. Приведены краткие исторические факты.

Отдельным издание выпущен задачник, в котором к каждому параграфу темы «Комплексные числа» приводятся задания трех разных уровней – легкие, средние и задания повышенной трудности.

В учебнике М.И. Башмакова, Б.М. Беккер, В.М. Голохового «Задачи по математике. Алгебра и анализ» последняя глава посвящена теме «Комплексные числа». Отметим сразу, что данная книга представляет собой не просто сборник задач. Задачи объединяются в циклы, которые начинаются с рассмотрения конкретных примеров, простых вопросов, постепенно переходя к более общим и трудным вопросам. Перед текстом отдельных задач, а также в начале параграфов помещен небольшой теоретический вводный текст, где сообщаются необходимые сведения: формулы, определения новых понятий и т.п. Таким образом изучение материала по данной книге можно проводить самостоятельно, а также задачник можно использовать независимо от того или иного учебного пособия. В конце книги ко всем задачам даны краткие указания, а к наиболее трудным, отмеченным звездочкой, задачам даны решения. Тема «Комплексные числа» разбита на три параграфа: «Действия над комплексными числами», «Комплексная плоскость», «Корни многочленов». Комплексные числа вводятся как расширение множества вещественных чисел. В первом параграфе «Действия над комплексными числами» рассматриваются следующие операции над комплексными числами: сложение комплексных чисел, нахождение обратного числа, комплексно -сопряженного, извлечение квадратного корня из комплексного числа. В параграфе «Комплексная плоскость» вводится понятие комплексной плоскости; определение модуля и аргумента комплексного числа; тригонометрическая форма записи комплексного числа, умножение и деление комплексных чисел в тригонометрической форме; формула Муавра; равенство комплексных чисел, записанных в тригонометрической форме; кубический корень из единицы; разложение по формуле Бинома Ньютона. В последнем параграфе «Корни многочленов» вводится основная теорема алгебры, приводится разложение многочлена на линейные множители с комплексными коэффициентами, рассматривается вопрос о кратности корня. Объем предлагаемого для изучения материала достаточно велик, изложен очень кратко и для каждого понятия количество заданий небольшое. Но в целом учебник дает достаточное полное представление о комплексных числах, их применении и значении в математике.

Страницы: 1 2 3

Похожие публикации:

Особенности склонностей и профессиональной направленности умственно отсталых школьников
Понятия «склонности», «интересы», «профессиональная направленность» следует рассматривать во взаимосвязи с другими свойствами личности учащихся и особенностями их психофизического развития. Своеобразие интеллектуального и физического развития детей с умственной отсталостью не позволяет ставить вопр ...

Профилактическая помощь при работе в образовательных учреждениях
В настоящее время профилактика потребления психоактивных веществ во многих школьных коллективах представлена чаще всего тематическими лекциями школьных психологов, врачей психиатров-наркологов, либо работников органов внутренних дел, а также тематическими учебными занятиями, которые иногда проводят ...

Лингвистические аспекты методики обучения грамоте учащихся коррекционной школы
Следует заметить, что процесс обучения грамоте учитывает не только психологические особенности тех, кто начинает осваивать письменную речь, но и специфику самой речи и, в частности, ее письменность. Иными словами, обучение грамоте может быть успешным в том случае, если методика принимает также во в ...

Факторы адаптации детей в школе

Современное общество заинтересовано сохранить и улучшить здоровье человека. Эта проблема является одной из главных.

Категории

Copyright © 2019 - All Rights Reserved - www.pedagogyflow.ru