Педагогика » Методика изучения комплексных чисел в общеобразовательной школе » Элементы истории возникновения и становления теории комплексных чисел

Элементы истории возникновения и становления теории комплексных чисел

Страница 2

Также Л. Эйлером была выведена формула , которая впоследствии была названа его именем, хотя до Эйлера этой формулой владел английский математик Р. Котес (1682 – 1716). Эта формула позволила:

доказать периодичность экспоненциальной функции;

вывести логарифмы комплексных чисел.

Более строгую теорию нового множества чисел, которые были названы комплексными, развил немецкий ученый Карл Гаусс (1777 – 1855), который также дал их геометрическое толкование, позволившее преодолеть многие трудности в их понимании. Хотя до Гаусса геометрическое толкование встречается у датского землемера К. Веселя (1745 – 1818) и французского математика Аргана (1768–1822). К. Гаусс в 1831 году дал глубокое обоснование комплексных чисел и их приложений в математике. После того как появилось наглядное геометрическое изображение комплексных чисел с помощью точек плоскости и векторов на плоскости (Гаусс в 1831 г, Вессель в 1799 г, Арган в 1806 г), стало возможным сводить к комплексным числам и уравнениям для них многие задачи естествознания, особенно гидро- и аэродинамики, электротехники, теории упругости и прочности, а также геодезии и картографии. С этого времени существование «мнимых» или комплексных чисел стало общепризнанным фактом и они получили такое же реальное содержание, как и числа действительные.

В XIX веке О. Коши (1789–1857), Г. Риман (1826–1866), и К. Вейерштрасс (1815–1897) на базе комплексных чисел создали новую математическую дисциплину – теорию функций комплексного переменного, которая играет важную роль в современной математике.

С развитием науки и техники становилось все более ясным, что без комплексных чисел нельзя обойтись во многих практических делах. Широкое применение нашли комплексные числа в электротехнике, гидродинамике, картографии, в теории самолета и многих других отраслях. Большой вклад в развитие теории функций комплексного переменного внесли российские и советские ученые: Р.И. Мусхелишвили занимался ее приложениями к теории упругости, М.В. Келдыш и М.А. Лаврентьев - к аэродинамике и гидродинамике, Н.Н. Боголюбов и В.С. Владимиров - к проблемам квантовой теории поля. Сейчас трудно указать область физики, механики, технических дисциплин, где не применялись бы комплексные числа.

Следует отметить, что комплексные числа имеют большое познавательное и практическое значение. Их изучение в курсе математики средней общеобразовательной школы является весьма актуальным.

Страницы: 1 2 

Похожие публикации:

Определение предметной области и постановка задачи на разработку информационной системы
На начальном этапе исследования перед нами стояла задача узнать у студентов как можно больше информации в короткие сроки, чтобы определить каков уровень их творческого потенциала. Правильная оценка уровня творческого потенциала, умения принимать нестандартные решения, очень важна для самореализации ...

Система диагностирования, контроля, проверки и оценивания знаний
Диагностировать, контролировать, проверять и оценивать знания, умения студентов нужно в той логической последовательности, в какой проводится их изучение. Первым звеном в системе проверки следует считать предварительное выявление уровня знания студентов. Как правило, оно осуществляется в начале уче ...

Учебная программа занятий кружка «Роспись по дереву»
Для занятий росписи по дереву вполне достаточно обычных средних способностей, чтобы ученик при правильном руководстве им, сознательно усвоил технику росписи. Главной задачей на занятиях кружка «Роспись по дереву» является задача привить любовь к творчеству, развивать художественные способности, а т ...

Факторы адаптации детей в школе

Современное общество заинтересовано сохранить и улучшить здоровье человека. Эта проблема является одной из главных.

Категории

Copyright © 2020 - All Rights Reserved - www.pedagogyflow.ru