Педагогика » Методика реализации межпредметных и внутрипредметных связей при обучении математике » Роль понятийного аппарата во внутрипредметных связях

Роль понятийного аппарата во внутрипредметных связях

Страница 1

Одной из основных задач обучения является развитие целенаправленного мышления. Развитие же мышления предполагает формирование различных понятий, в том числе и математических, так как они выступают в качестве основной формы мышления. Понятия не могут существовать в отдельности друг от друга, они взаимообусловлены, взаимосвязаны. Существование каждого понятия было бы невозможно без определенных отношений к другим. Некоторые понятия вообще не могут существовать вне этих отношений. Так, например, понятия радиус, хорда, диаметр, вписанный угол и т. д. не мыслимы без соотнесения их с понятием окружности.

В учебном курсе понятия могут играть разную роль: одни из них являются общими, с широким спектром приложений, другие же играют функцию подчиненную. Учитель должен уметь выделять общие, ведущие понятия курса. Ведущими понятиями будем считать те, которые удовлетворяют следующим критериям: они должны формировать научное мировоззрение; значительно чаще других понятий служить средством изучения различных вопросов математики; активно работать на протяжении большого промежутка времени; способствовать наиболее полной реализации внутрипредметных связей, а, в конечном счете, и межпредметных; иметь прикладную и практическую направленность. Примерами таких ведущих понятий могут служить: число, величина, фигура, функция, график, уравнение, неравенство, равносильность, алгоритм и т. д.

Выделив ведущие понятия, учитель должен затем проследить их развитие во всем курсе школьной математики, тем самым определить его содержательно-методические линии, которые обеспечивают курсу необходимую систематичность и последовательность, отражают идейную сторону математики и являются важнейшим средством обеспечения преемственности всего изучаемого материала.

Перечислим основные содержательно-методические линии школьного курса алгебры: числовая, алгоритмическая, функциональная, линия уравнений и неравенств.

Реализация внутрипредметных связей вовсе не должна означать установление искусственных связей; наряду со связями, играющими положительную роль в процессе обучения, имеют место и связи отрицательного действия. Задача учителя — суметь в каждом конкретном случае отчленить одни связи от других и исключить связи отрицательного воздействия. Приведем примеры связей отрицательного действия.

1. Учащиеся, используя основное свойство дроби, ошибочно преобразуют дробь к следующему виду: или .

Ошибки получены в результате сокращения дроби не на множитель, как того требует основное свойство дроби, а на слагаемое.

2. При введении понятия иррационального числа многие учителя иллюстрируют это понятие лишь такими примерами: ; - и т. д. Это приводит к тому, что затем на вопрос: «Приведите примеры иррациональных чисел» — учащиеся отвечают лишь подобными примерами, тем самым происходит сужение объема понятия иррационального числа. Этого не произошло, если бы народу с приведенными выше примерами учитель показал и иррациональное число 0,001 00001 . (используется связь с бесконечными непериодическими десятичными дробями)

Значительная часть приведенных ошибок возникла в результате следующих причин. Это большая прочность ранее образованных связей по сравнению с позже возникающими; стремление учащихся к автоматическому применению теории без достаточного анализа возможности ее применения; доминирование ассоциативных связей над смысловыми, склонность действовать по стереотипу.

Отрицательные связи, устанавливаемые учениками, можно предвидеть и вести работу, которая могла бы их предотвратить. Так, например, большое число решенных задач по разложению на множители трехчленов вида x2+px + q не облегчает, а скорее затрудняет формирование навыка разложения на множители трехчленов вида ах2+bх+с (учащиеся записывают ошибочный ответ в виде (х — х1)(х — х2), опуская множитель а). Поэтому выполнение упражнений по разложению на множители трехчленов первого вида не должно быть длительным. Преподавание должно вестись по способу чередования разнотипных задач.

Одни и те же понятия могут быть определены на основе разных исходных посылок, различными способами. Все эти определения могут оказаться равноценными, но они будут иметь существенную разницу в достигнутых результатах обучения, в частности будет различной полнота внутрипредметных связей. Задача состоит в том, чтобы отыскать такой вариант, при котором эти результаты обучения будут наилучшими. Важно разъяснять учащимся реальный смысл понятий, показывать, отражением каких сторон действительности они являются.

Страницы: 1 2

Похожие публикации:

Значение группообразования для подростков. Общение, принятие в группу
Как было показано выше, в подростковом возрасте происходят значительные изменения социальных связей. И в этом заключается одна из наиболее значимых задач развития подростничества. Ценности и нормы отныне диктует группа сверстников, влияние семьи, родителей отходит на второй план. (Хотя нельзя утвер ...

Реализация дифференцированного подхода на уроках математики
Организация дифференцированного подхода требует больших знаний учителя об индивидуальных особенностях класса, о критериях составления уровневых заданий, о построении учебного процесса с использованием данной технологии. Но, не смотря на это, при правильном осуществлении такого подхода в обучении уч ...

Семейная жизнь ребенка
Семейная жизнь ребенка занимает семь первых лет после рождения его на свет. Этот отдел в жизни ребенка можно подразделить на следующие периоды: 1. первый год после рождения на свет до конца первого года; в это время ребенок из лежачего положения переходит в сидячее, а затем становится и начинает са ...

Факторы адаптации детей в школе

Современное общество заинтересовано сохранить и улучшить здоровье человека. Эта проблема является одной из главных.

Категории

Copyright © 2019 - All Rights Reserved - www.pedagogyflow.ru